Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3064, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594232

RESUMO

The gastroesophageal squamocolumnar junction (GE-SCJ) is a critical tissue interface between the esophagus and stomach, with significant relevance in the pathophysiology of gastrointestinal diseases. Despite this, the molecular mechanisms underlying GE-SCJ development remain unclear. Using single-cell transcriptomics, organoids, and spatial analysis, we examine the cellular heterogeneity and spatiotemporal dynamics of GE-SCJ development from embryonic to adult mice. We identify distinct transcriptional states and signaling pathways in the epithelial and mesenchymal compartments of the esophagus and stomach during development. Fibroblast-epithelial interactions are mediated by various signaling pathways, including WNT, BMP, TGF-ß, FGF, EGF, and PDGF. Our results suggest that fibroblasts predominantly send FGF and TGF-ß signals to the epithelia, while epithelial cells mainly send PDGF and EGF signals to fibroblasts. We observe differences in the ligands and receptors involved in cell-cell communication between the esophagus and stomach. Our findings provide insights into the molecular mechanisms underlying GE-SCJ development and fibroblast-epithelial crosstalk involved, paving the way to elucidate mechanisms during adaptive metaplasia development and carcinogenesis.


Assuntos
Fator de Crescimento Epidérmico , Junção Esofagogástrica , Animais , Camundongos , Fator de Crescimento Epidérmico/metabolismo , Junção Esofagogástrica/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibroblastos/metabolismo , Análise de Célula Única
2.
Nat Commun ; 15(1): 1745, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409141

RESUMO

Human cytomegalovirus (HCMV) is a widespread pathogen that in immunocompromised hosts can cause life-threatening disease. Studying HCMV-exposed monocyte-derived dendritic cells by single-cell RNA sequencing, we observe that most cells are entered by the virus, whereas less than 30% of them initiate viral gene expression. Increased viral gene expression is associated with activation of the stimulator of interferon genes (STING) that usually induces anti-viral interferon responses, and with the induction of several pro- (RHOB, HSP1A1, DNAJB1) and anti-viral (RNF213, TNFSF10, IFI16) genes. Upon progression of infection, interferon-beta but not interferon-lambda transcription is inhibited. Similarly, interferon-stimulated gene expression is initially induced and then shut off, thus further promoting productive infection. Monocyte-derived dendritic cells are composed of 3 subsets, with one being especially susceptible to HCMV. In conclusion, HCMV permissiveness of monocyte-derived dendritic cells depends on complex interactions between virus sensing, regulation of the interferon response, and viral gene expression.


Assuntos
Citomegalovirus , Interferons , Humanos , Citomegalovirus/fisiologia , Transdução de Sinais/genética , Antivirais/metabolismo , Células Dendríticas/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Adenosina Trifosfatases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Gut Microbes ; 15(1): 2186109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36939013

RESUMO

Infection research largely relies on classical cell culture or mouse models. Despite having delivered invaluable insights into host-pathogen interactions, both have limitations in translating mechanistic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our model to enteric infection research in the human context. Infection assays coupled to spatio-temporal readouts recapitulated the established key steps of epithelial infection by this pathogen in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto unrecognized aspect of the host response to Salmonella infection. Together, this primary human small intestinal tissue model fills the gap between simplistic cell culture and animal models of infection, and shall prove valuable in uncovering human-specific features of host-pathogen interplay.


Assuntos
Microbioma Gastrointestinal , Salmonelose Animal , Humanos , Intestino Delgado , Salmonella typhimurium
4.
Leukemia ; 37(3): 650-658, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720972

RESUMO

Pseudo-progression and flare-up phenomena constitute a novel diagnostic challenge in the follow-up of patients treated with immune-oncology drugs. We present a case study on pulmonary flare-up after Idecabtagen Vicleucel (Ide-cel), a BCMA targeting CAR T-cell therapy, and used single-cell RNA-seq (scRNA-seq) to identify a Th17.1 driven autoimmune mechanism as the biological underpinning of this phenomenon. By integrating datasets of various lung pathological conditions, we revealed transcriptomic similarities between post CAR T pulmonary lesions and sarcoidosis. Furthermore, we explored a noninvasive PET based diagnostic approach and showed that tracers binding to CXCR4 complement FDG PET imaging in this setting, allowing discrimination between immune-mediated changes and true relapse after CAR T-cell treatment. In conclusion, our study highlights a Th17.1 driven autoimmune phenomenon after CAR T, which may be misinterpreted as disease relapse, and that imaging with multiple PET tracers and scRNA-seq could help in this diagnostic dilemma.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Sarcoidose , Humanos , Antígeno de Maturação de Linfócitos B , Inflamação/metabolismo , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/metabolismo , Sarcoidose/metabolismo , Linfócitos T , Células Th17
5.
Cardiovasc Res ; 119(3): 772-785, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35950218

RESUMO

AIMS: Macrophages have a critical and dual role in post-ischaemic cardiac repair, as they can foster both tissue healing and damage. Multiple subsets of tissue resident and monocyte-derived macrophages coexist in the infarcted heart, but their precise identity, temporal dynamics, and the mechanisms regulating their acquisition of discrete states are not fully understood. To address this, we used multi-modal single-cell immune profiling, combined with targeted cell depletion and macrophage fate mapping, to precisely map monocyte/macrophage transitions after experimental myocardial infarction. METHODS AND RESULTS: We performed single-cell transcriptomic and cell-surface marker profiling of circulating and cardiac immune cells in mice challenged with acute myocardial infarction, and integrated single-cell transcriptomes obtained before and at 1, 3, 5, 7, and 11 days after infarction. Using complementary strategies of CCR2+ monocyte depletion and fate mapping of tissue resident macrophages, we determined the origin of cardiac macrophage populations. The macrophage landscape of the infarcted heart was dominated by monocyte-derived cells comprising two pro-inflammatory populations defined as Isg15hi and MHCII+Il1b+, alongside non-inflammatory Trem2hi cells. Trem2hi macrophages were observed in the ischaemic area, but not in the remote viable myocardium, and comprised two subpopulations sequentially populating the heart defined as Trem2hiSpp1hi monocyte-to-macrophage intermediates, and fully differentiated Trem2hiGdf15hi macrophages. Cardiac Trem2hi macrophages showed similarities to 'lipid-associated macrophages' found in mouse models of metabolic diseases and were observed in the human heart, indicating conserved features of this macrophage state across diseases and species. Ischaemic injury induced a shift of circulating Ly6Chi monocytes towards a Chil3hi state with granulocyte-like features, but the acquisition of the Trem2hi macrophage signature occurred in the ischaemic tissue. In vitro, macrophages acquired features of the Trem2hi signature following apoptotic-cell efferocytosis. CONCLUSION: Our work provides a comprehensive map of monocyte/macrophage transitions in the ischaemic heart, constituting a valuable resource for further investigating how these cells may be harnessed and modulated to promote post-ischaemic heart repair.


Assuntos
Macrófagos , Infarto do Miocárdio , Camundongos , Humanos , Animais , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Monócitos/metabolismo , Miocárdio/metabolismo , Fagocitose , Camundongos Endogâmicos C57BL
6.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34914922

RESUMO

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/virologia , Macrófagos/patologia , Macrófagos/virologia , SARS-CoV-2/fisiologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , COVID-19/diagnóstico por imagem , Comunicação Celular , Estudos de Coortes , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/genética , Células-Tronco Mesenquimais/patologia , Fenótipo , Proteoma/metabolismo , Receptores de Superfície Celular/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Tomografia Computadorizada por Raios X , Transcrição Gênica
7.
Cell ; 182(6): 1419-1440.e23, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32810438

RESUMO

Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.


Assuntos
Infecções por Coronavirus/imunologia , Células Mieloides/imunologia , Mielopoese , Pneumonia Viral/imunologia , Adulto , Idoso , Antígenos CD11/genética , Antígenos CD11/metabolismo , COVID-19 , Células Cultivadas , Infecções por Coronavirus/sangue , Infecções por Coronavirus/patologia , Feminino , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Células Mieloides/citologia , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/patologia , Proteoma/genética , Proteoma/metabolismo , Proteômica , Análise de Célula Única
8.
Nature ; 571(7765): 419-423, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292545

RESUMO

Single-cell RNA sequencing (scRNA-seq) has highlighted the important role of intercellular heterogeneity in phenotype variability in both health and disease1. However, current scRNA-seq approaches provide only a snapshot of gene expression and convey little information on the true temporal dynamics and stochastic nature of transcription. A further key limitation of scRNA-seq analysis is that the RNA profile of each individual cell can be analysed only once. Here we introduce single-cell, thiol-(SH)-linked alkylation of RNA for metabolic labelling sequencing (scSLAM-seq), which integrates metabolic RNA labelling2, biochemical nucleoside conversion3 and scRNA-seq to record transcriptional activity directly by differentiating between new and old RNA for thousands of genes per single cell. We use scSLAM-seq to study the onset of infection with lytic cytomegalovirus in single mouse fibroblasts. The cell-cycle state and dose of infection deduced from old RNA enable dose-response analysis based on new RNA. scSLAM-seq thereby both visualizes and explains differences in transcriptional activity at the single-cell level. Furthermore, it depicts 'on-off' switches and transcriptional burst kinetics in host gene expression with extensive gene-specific differences that correlate with promoter-intrinsic features (TBP-TATA-box interactions and DNA methylation). Thus, gene-specific, and not cell-specific, features explain the heterogeneity in transcriptomes between individual cells and the transcriptional response to perturbations.


Assuntos
Regulação da Expressão Gênica/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única , Transcrição Gênica/genética , Alquilação , Animais , Ciclo Celular , Citomegalovirus/fisiologia , Metilação de DNA , Fibroblastos/metabolismo , Fibroblastos/virologia , Cinética , Camundongos , Regiões Promotoras Genéticas/genética , RNA/análise , RNA/química , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...